## Brief information about the project

| Name of the project              | AP09057924 «Improved photocatalytic air treatment            |
|----------------------------------|--------------------------------------------------------------|
|                                  | technology for removal of volatile organic compounds»        |
| Relevance                        | The project focuses on the development of fundamental        |
|                                  | basis of preparation photocatalytic materials that have      |
|                                  | suitable composition and substrate to drive photocatalytic   |
|                                  | reactions preventing emissions of byproducts associated      |
|                                  | with partial oxidation of both parent volatile organic       |
|                                  | compounds in air and/or substrates. In addition to           |
|                                  | contributions to the theory of chemical reactions promoted   |
|                                  | by catalyst and light (photocatalysis) the data produced at  |
|                                  | realistic environmental conditions and operating             |
|                                  | parameters will lead to a photocatalytic device design for   |
|                                  | air treatment.                                               |
| Purpose                          | Develop scientific principles for efficient, scalable and    |
|                                  | economic approaches to prepare TiO2 based                    |
|                                  | photocatalytic materials by adjusting its features and       |
|                                  | operating parameters to drive photocatalytic reactions       |
|                                  | preventing secondary pollution. The achievements of the      |
|                                  | project will lead to the development of highly active        |
|                                  | photocatalysts for indoor air treatment.                     |
| Objectives                       | 1) Fixing TiO2-based photocalysts to the various             |
|                                  | substrates to achieve reliable long-term adhesion and        |
|                                  | minimal reduction in photoactivity.                          |
|                                  | 2) Evaluation of the photosotalutic activity of the property |
|                                  | 2) Evaluation of the photocatarytic activity of the prepared |
|                                  | compounds                                                    |
|                                  | compounds.                                                   |
|                                  | 3) Design and test a prototype of small-size photocatalytic  |
|                                  | device for indoor air purifying treatment.                   |
| Expected and achieved results    | The efficiency of decomposition of aromatic volatile         |
| r                                | organic compounds in the process of their photocatalytic     |
|                                  | oxidation over titanium oxide in a flow reactor and in a     |
|                                  | test, chamber was determined. A series of photocatalytic     |
|                                  | oxidation of benzene, toluene, ethylbenzene, and o-xylene    |
|                                  | was established, and as a result, the sequential             |
|                                  | decomposition of BTEX compound in the gas phase was          |
|                                  | determined. This can lead to a delayed air purification of   |
|                                  | VOCs, which was demonstrated by calculations of air          |
|                                  | quality indices. In addition, a prototype photocatalytic air |
|                                  | purifier based on photocatalyst, and volcanic glass was      |
|                                  | developed.                                                   |
| Research team members with       | Uralbekov Bolat                                              |
| their identifiers (Scopus Author | ORCID: http://orcid.org/0000-0002-3245-4096                  |
| ID, Researcher ID, ORCID, if     | Scopus Author ID: 36664090200                                |
| available) and links to relevant | ResearcherID:IRW-8210-2023                                   |
| profiles                         |                                                              |
|                                  | Satybaldiyev, Bagdat                                         |
|                                  | ORCID: <u>https://orcid.org/0000-0003-3434-7291</u>          |
|                                  | Scopus Author ID: 55970118000                                |

|                                    | ResearcherID:DOP-7533-2022                                 |
|------------------------------------|------------------------------------------------------------|
|                                    |                                                            |
|                                    | Orazov Zhandos                                             |
|                                    | OPCID: https://orcid.org/0000_0002_6562_6093               |
|                                    | Scorpus Author ID: 57226807084                             |
|                                    | Scopus Aumor ID. 37220807984                               |
|                                    | Numerican Numbels                                          |
|                                    |                                                            |
|                                    | ORCID: <u>https://orcid.org/0000-0003-3892-4922</u>        |
|                                    | Scopus Author ID: 58000437800                              |
|                                    | ResearcherID:HKY-2275-2023                                 |
| List of publications with links to | https://www.mdpi.com/1420-3049/28/18/6451                  |
| them                               | Tulebekov, Y., Orazov, Z., Satybaldiyev, B., Snow, D. D.,  |
|                                    | Schneider, R., & Uralbekov, B. (2023). Reaction Steps in   |
|                                    | Heterogeneous Photocatalytic Oxidation of Toluene in Gas   |
|                                    | Phase—A Review Molecules 28(18) 6451                       |
|                                    |                                                            |
|                                    | https://www.mdpi.com/1420-3049/28/24/8119                  |
|                                    | Smaiyl, M., Tulebekov, Y., Nurpeisov, N., Satybaldivey,    |
|                                    | B. Snow D. D. & Uralbekov, B. (2023) Human Health          |
|                                    | Risk Assessment of the Photocatalytic Oxidation of BTEX    |
|                                    | $rac{1}{2}$ over TiO2/Volcanic Glass Molecules 28(24) 8110 |
| Detents                            | Application for a notant for an invention. Photo potalytic |
| Patents                            | Application for a patent for an invention. Photo-catalytic |
|                                    | air purifier. Reg. application number 2023/0/11.1, dated   |
|                                    | 10/24/2023.                                                |



